The metrizability of L-topological groups

Fatma Bayoumi* and Ismail Ibedou

Department of Mathematics, Faculty of Sciences, Benha University, Benha 13518, Egypt

Abstract

This paper studies the metrizability of the notion of L-topological groups defined by Ahsanullah. We show that for any (separated) L-topological group there is an L-pseudo-metric (L-metric), in sense of Gähler which is defined using his notion of L-real numbers, compatible with the L-topology of this (separated) L-topological group. That is, any (separated) L-topological group is pseudo-metrizable (metrizable).

Keywords: Countable L-filters; Countable L-topological spaces; L-topological groups; Separated L-topological groups; L-metric spaces; L-pseudo-metric spaces; L-uniform spaces; L-filters.

1. Introduction

The notion of L-real numbers is defined and studied by S. Gähler and W. Gähler in [12]. \mathbf{R}_L denotes the set of all L-real numbers. The subset \mathbf{R}_L^* of \mathbf{R}_L of all positive L-real numbers is used to define the L-pseudo-metric (L-metric) on a set X, by the same authors in [12], as a mapping of the cartesian product $X \times X$ to \mathbf{R}_L^* which satisfies similar conditions to the conditions of the usual metric. In this paper, we study the metrizability, using the L-pseudo-metric (L-metric) in sense of [12], of a notion of L-topological group which is introduced in [1] and studied in [5]. This L-topological group is defined as a group equipped with an L-topology such that both the binary operation and the unary operation of the inverse are L-continuous with respect to this L-topology.

In this paper, using the uniformizability of L-topological groups introduced by the authors in [9], we show that any (separated) L-topological group is pseudometrizable (metrizable). In [9] is used the L-uniform structures which are defined in [15] on a set X, in a similar way to the usual case, as L-filters on $X \times X$.

In Section 2 of this paper we recall some results on L-filters, L-real numbers defined by Gähler in [11, 12, 13, 14], and some separation axioms defined by the authors in [2, 3, 6, 7, 8].

Sections 3 and 4 introduce and show some results on L-metric and L-uniform

^{*}Corresponding author: e-mail: fatma_bayoumi@hotmail.com

spaces, respectively, which are needed to show the metrizability of L-topological groups.

In Section 5 we show that the L-pseudo-metric (L-metric), in sense of [12], induces the L-topology of a (separated) L-topological group, that is, any (separated) L-topological group is pseudo-metrizable (metrizable).

2. On L-filters

Here we recall some ideas concerning L-filters needed in this paper. Denote by L^X the set of all L-subsets of a non-empty set X, where L is a complete chain with different least and greatest elements 0 and 1, respectively [20]. For each L-set $\lambda \in L^X$, let λ' denote the complement of λ , defined by $\lambda'(x) = \lambda(x)'$ for all $x \in X$. For all $x \in X$ and $\alpha \in L_0$, the L-subset x_α of X whose value is α at x and 0 otherwise is called an L-point in X and the constant L-subset of X with value α will be denoted by $\overline{\alpha}$.

L-filters. By an L-filter on a non-empty set X we mean [13] a mapping \mathcal{M} : $L^X \to L$ such that $\mathcal{M}(\overline{\alpha}) \leq \alpha$ for all $\alpha \in L$ and $\mathcal{M}(\overline{1}) = 1$, and also $\mathcal{M}(\lambda \wedge \mu) = \mathcal{M}(\lambda) \wedge \mathcal{M}(\mu)$ for all $\lambda, \mu \in L^X$. \mathcal{M} is called homogeneous [11] if $\mathcal{M}(\overline{\alpha}) = \alpha$ for all $\alpha \in L$. If \mathcal{M} and \mathcal{N} are L-filters on X, \mathcal{M} is called finer than \mathcal{N} , denoted by $\mathcal{M} \leq \mathcal{N}$, provided $\mathcal{M}(\lambda) \geq \mathcal{N}(\lambda)$ holds for all $\lambda \in L^X$.

Let $\mathcal{F}_L X$ denote the set of all L-filters on X, $f: X \to Y$ a mapping and \mathcal{M} , \mathcal{N} are L-filters on X, Y, respectively. Then the image of \mathcal{M} and the preimage of \mathcal{N} with respect to f are the L-filters $\mathcal{F}_L f(\mathcal{M})$ on Y and $\mathcal{F}_L^- f(\mathcal{N})$ on X defined by $\mathcal{F}_L f(\mathcal{M})(\mu) = \mathcal{M}(\mu \circ f)$ for all $\mu \in L^Y$ and $\mathcal{F}_L^- f(\mathcal{N})(\lambda) = \bigvee_{\mu \circ f \leq \lambda} \mathcal{N}(\mu)$ for all $\lambda \in L^X$, respectively. For each mapping $f: X \to Y$ and each L-filter \mathcal{N} on Y, for which the preimage $\mathcal{F}_L^- f(\mathcal{N})$ exists, we have $\mathcal{F}_L f(\mathcal{F}_L^- f(\mathcal{N})) \leq \mathcal{N}$. Moreover, for each L-filter \mathcal{M} on X, the inequality $\mathcal{M} \leq \mathcal{F}_L^- f(\mathcal{F}_L f(\mathcal{M}))$ holds [13].

For any set A of L-filters on X, the infimum $\bigwedge_{\mathcal{M} \in A} \mathcal{M}$, with respect to the finer relation on L-filters, does not exist in general. The infimum $\bigwedge_{\mathcal{M} \in A} \mathcal{M}$ of A exists if and only if for each non-empty finite subset $\{\mathcal{M}_1, \ldots, \mathcal{M}_n\}$ of A we have $\mathcal{M}_1(\lambda_1) \wedge \cdots \wedge \mathcal{M}_n(\lambda_n) \leq \sup(\lambda_1 \wedge \cdots \wedge \lambda_n)$ for all $\lambda_1, \ldots, \lambda_n \in L^X$ [11]. If the infimum of A exists, then for each $\lambda \in L^X$ and n as a positive integer we have

$$(\bigwedge_{\mathcal{M}\in A}\mathcal{M})(\lambda) = \bigvee_{\substack{\lambda_1\wedge\cdots\wedge\lambda_n\leq\lambda,\\\mathcal{M}_1,\ldots,\mathcal{M}_n\in A}} (\mathcal{M}_1(\lambda_1)\wedge\cdots\wedge\mathcal{M}_n(\lambda_n)).$$

By a filter on X we mean a non-empty subset \mathcal{F} of L^X which does not contain $\overline{0}$ and closed under finite infima and super sets [18]. For each L-filter \mathcal{M} on X, the subset α -pr \mathcal{M} of L^X defined by: α -pr $\mathcal{M} = \{\lambda \in L^X \mid \mathcal{M}(\lambda) \geq \alpha\}$ is a filter on X.

A family $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$ of non-empty subsets of L^X is called *valued L-filter base* on X [13] if the following conditions are fulfilled:

- (V1) $\lambda \in \mathcal{B}_{\alpha}$ implies $\alpha \leq \sup \lambda$.
- (V2) For all $\alpha, \beta \in L_0$ and all L-sets $\lambda \in \mathcal{B}_{\alpha}$ and $\mu \in \mathcal{B}_{\beta}$, if even $\alpha \wedge \beta > 0$ holds, then there are a $\gamma \geq \alpha \wedge \beta$ and an L-set $\nu \leq \lambda \wedge \mu$ such that $\nu \in \mathcal{B}_{\gamma}$.

Each valued L-filter base $(\mathcal{B}_{\alpha})_{\alpha \in L_0}$ on a set X defines an L-filter \mathcal{M} on X by: $\mathcal{M}(\lambda) = \bigvee_{\mu \in \mathcal{B}_{\alpha}, \mu \leq \lambda} \alpha$ for all $\lambda \in L^X$. On the other hand, each L-filter \mathcal{M} can be generated by many valued L-filter bases, and among them the greatest one $(\alpha$ -pr $\mathcal{M})_{\alpha \in L_0}$.

L-neighborhood filters. In the following, in sense of [10, 16], the topology will be used and will be called L-topology. $\operatorname{int}_{\tau}$ and cl_{τ} denote the interior and the closure operators with respect to the L-topology τ , respectively. For each L-topological space (X,τ) and each $x \in X$ the mapping $\mathcal{N}(x): L^X \to L$ defined by: $\mathcal{N}(x)(\lambda) = \operatorname{int}_{\tau}\lambda(x)$ for all $\lambda \in L^X$ is an L-filter on X, called the L-neighborhood filter of the space (X,τ) at x, and the mapping $\dot{x}: L^X \to L$ defined by $\dot{x}(\lambda) = \lambda(x)$ for all $\lambda \in L^X$ is a homogeneous L-filter on X. Let (X,τ) and (Y,σ) be two L-topological spaces. Then the mapping $f:(X,\tau)\to (Y,\sigma)$ is called L-continuous (or (τ,σ) -continuous) provided $\operatorname{int}_{\sigma}\mu \circ f \leq \operatorname{int}_{\tau}(\mu \circ f)$ for all $\mu \in L^Y$ [14].

The *L*-neighborhood filter $\mathcal{N}(F)$ at an ordinary subset F of X is the *L*-filter on X defined, by the authors in [3], by means of $\mathcal{N}(x)$, $x \in F$ as: $\mathcal{N}(F) = \bigvee_{x \in F} \mathcal{N}(x)$.

The *L*-filter \dot{F} is defined by: $\dot{F} = \bigvee_{x \in F} \dot{x}$. $\dot{F} \leq \mathcal{N}(F)$ holds for all subsets F of X.

Recall also here the L-filter $\dot{\lambda}$ and the L-neighborhood filter $\mathcal{N}(\lambda)$ at an L-subset λ of X which are defined by

$$\dot{\lambda} = \bigvee_{0 < \lambda(x)} \dot{x} \text{ and } \mathcal{N}(\lambda) = \bigvee_{0 < \lambda(x)} \mathcal{N}(x),$$
 (2.1)

respectively. $\dot{\lambda} \leq \mathcal{N}(\lambda)$ holds for all $\lambda \in L^X$ [4].

L-real numbers. By an L-real number is meant [12] a convex, normal, compactly supported and upper semi-continuous L-subset of the set of all real numbers \mathbf{R} . The set of all L-real numbers is denoted by \mathbf{R}_L . \mathbf{R} is canonically embedded into \mathbf{R}_L , identifying each real number a with the crisp L-number a^{\sim} defined by $a^{\sim}(\xi) = 1$ if $\xi = a$ and 0 otherwise. The set of all positive L-real numbers is defined and denoted by: $\mathbf{R}_L^* = \{x \in \mathbf{R}_L \mid x(0) = 1 \text{ and } 0^{\sim} \leq x\}$ and let $I_L = \{x \in \mathbf{R}_L^* \mid x \leq 1^{\sim}\}$, where I = [0, 1] is the real unit interval. Notice that, with \leq we mean that the binary operation on \mathbf{R}_L defined by

$$x \le y \Leftrightarrow x_{\alpha_1} \le y_{\alpha_1}$$
 and $x_{\alpha_2} \le y_{\alpha_2}$

for all $x, y \in \mathbf{R}_L$ where $x_{\alpha_1} = \inf\{z \in \mathbf{R} \mid x(z) \geq \alpha\}$ and $x_{\alpha_2} = \sup\{z \in \mathbf{R} \mid x(z) \geq \alpha\}$ for all $x \in \mathbf{R}_L$ and for all $\alpha \in L_0$. It is shown in [13] that the class

 $\{R_{\delta}|_{I_L} \mid \delta \in I\} \cup \{R^{\delta}|_{I_L} \mid \delta \in I\} \cup \{0^{\sim}|_{I_L}\}\$ is a base for an L-topology \Im on I_L , where R^{δ} and R_{δ} are the L-subsets of \mathbf{R}_L defined by $R_{\delta}(x) = \bigvee_{\substack{\alpha > \delta \\ \alpha > \delta}} x(\alpha)$ and $R^{\delta}(x) = (\bigvee_{\substack{\alpha \geq \delta \\ \alpha \geq \delta}} x(\alpha))'$ for all $x \in \mathbf{R}_L$ and $\delta \in \mathbf{R}$ and note that $R_{\delta}|_{I_L}$, $R^{\delta}|_{I_L}$ are the restrictions of R_{δ} , R^{δ} on I_L , respectively. Recall also that $x \pm y$ are L-real numbers defined by $(x \pm y)(\xi) = \bigvee_{\substack{\eta, \zeta \in \mathbf{R}, \ \eta \pm \zeta = \xi \\ \eta, \zeta \in \mathbf{R}}} (x(\eta) \wedge y(\zeta))$ for all $\xi \in \mathbf{R}$. $(\mathbf{R}_L, +)$ is a commutative semi group with identity element 0^{\sim} . The positive part x^+ of an L-real number x is defined as $x^+ = 0^{\sim} \vee x$, where

$$x - x = 0^{\sim}, (x + y)^{+} \le x^{+} + y^{+}.$$
 (2.2)

 GT_i -spaces. An L-topological space (X, τ) is called [2, 6]:

- (1) GT_0 if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \not\leq \mathcal{N}(y)$ or $\dot{y} \not\leq \mathcal{N}(x)$.
- (2) GT_1 if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \nleq \mathcal{N}(y)$ and $\dot{y} \nleq \mathcal{N}(x)$.
- (3) completely regular if for all $x \notin F$ and $F = \operatorname{cl}_{\tau} F$, there exists an L-continuous mapping $f: (X, \tau) \to (I_L, \Im)$ such that $f(x) = \overline{1}$ and $f(y) = \overline{0}$ for all $y \in F$.
- (4) $GT_{3\frac{1}{2}}$ (or *L-Tychonoff*) if it is GT_1 and completely regular.

Proposition 2.1 [2, 3, 6, 7, 8] Every GT_i -space is GT_{i-1} -space for all i = 1, 2, 3, 4, 5, 6. Moreover, the implications between GT_2 -spaces, $GT_{2\frac{1}{2}}$ -spaces, GT_3 -spaces, $GT_{3\frac{1}{2}}$ -spaces and GT_4 -spaces goes as expected.

3. Some results on L-metric spaces

A mapping $\varrho: X \times X \longrightarrow \mathbf{R}_L^*$ is called an *L-metric* [12] on X if the following conditions are fulfilled:

- (1) $\varrho(x,y) = 0^{\sim}$ if and only if x = y
- (2) $\varrho(x,y) = \varrho(y,x)$
- (3) $\varrho(x,y) \le \varrho(x,z) + \varrho(z,y)$.

If $\varrho: X \times X \longrightarrow \mathbf{R}_L^*$ satisfies the conditions (2) and (3) and the following condition:

$$(1)' \ \varrho(x,y) = 0^{\sim} \text{ if } x = y$$

then it is called an L-pseudo-metric on X.

A set X equipped with an L-pseudo-metric (L-metric) ϱ on X is called an L-pseudo-metric (L-metric) space.

To each L-pseudo-metric (L-metric) ϱ on a set X is generated canonically a stratified L-topology τ_{ϱ} on X which has $\{\varepsilon \circ \varrho_x \mid \varepsilon \in \mathcal{E}, x \in X\}$ as a base, where $\varrho_x : X \to \mathbf{R}_L^*$ is the mapping defined by $\varrho_x(y) = \varrho(x, y)$ and

$$\mathcal{E} = \{ \overline{\alpha} \wedge R^{\delta} |_{\mathbf{R}_{L}^{*}} \mid \delta > 0, \ \alpha \in L \} \cup \{ \overline{\alpha} \mid \alpha \in L \},$$

here $\overline{\alpha}$ has \mathbf{R}_L^* as domain.

An L-topological space (X, τ) is called *pseudo-metrizable* (*metrizable*) if there is an L-pseudo-metric (L-metric) ϱ on X inducing τ , that is, $\tau = \tau_{\varrho}$.

An L-pseudo-metric ϱ is called *left* (right) invariant if

$$\varrho(x,y) = \varrho(ax,ay)$$
 $(\varrho(x,y) = \varrho(xa,ya))$ for all $a,x,y \in X$.

An L-set $\lambda \in L^X$ is called *countable* (*finite*) if its support is countable (finite), where the support of λ is the set $\{x \in X \mid 0 < \lambda(x)\}$.

Let us call an L-filter \mathcal{M} on a set X countable if the sets α -pr \mathcal{M} are countable for all $\alpha \in L_0$.

Definition 3.1 An L-topological space (X, τ) is called *first countable* if every point $x \in X$ has a countable L-neighborhood filter $\mathcal{N}(x)$.

Proposition 3.1 For any L-pseudo-metric ϱ on a set X, if τ_{ϱ} is the L-topology associated with ϱ , then (X, τ_{ϱ}) is a first countable space.

Proof. Since $\{\varepsilon \circ \varrho_x \mid \varepsilon \in \mathcal{E}, x \in X\}$ is a base for τ_{ϱ} , then for all $n \in \mathbb{N}$, the set $B_n = \{\varepsilon_n \circ \varrho_x \mid \varepsilon_n \in \mathcal{E}, x \in X\}$, where $\varepsilon_n = \frac{\overline{1}}{n} \wedge R^{\delta}|_{\mathbf{R}_L^*}$, is the $\frac{1}{n}$ -pr $\mathcal{N}(x)$, which implies that there exists a countable L-neighborhood filter $\mathcal{N}(x)$ at every point $x \in X$. Hence, (X, τ_{ϱ}) is a first countable space. \square

By an *L*-function family Φ on a set X, we mean the set of all *L*-real functions $f: X \to I_L$.

We also have the following results.

Lemma 3.1 Let Φ be an L-function family on X and $\sigma_f: X \times X \to I_L$ is a mapping defined by

$$\sigma_f(x,y) = (f(x) - f(y))^+, f \in \Phi.$$

Then σ_f is an L-pseudo-metric on X.

Proof. Clearly, $\sigma_f(x,y) = \sigma_f(y,x)$. From (2.2), we get that $\sigma_f(x,x) = (f(x) - f(x))^+ = 0^-$ for all $x \in X$, and moreover

$$\sigma_f(x,y) = (f(x) - f(y))^+ \le (f(x) - f(z))^+ + (f(z) - f(y))^+ = \sigma_f(x,z) + \sigma_f(z,y).$$

Hence, σ_f is an L-pseudo-metric on X. \square

Lemma 3.2 Let $\sigma_i: X \times X \to I_L$, $i \in I$ be an arbitrary set of L-pseudo-metrics on the set X. Then

$$\sigma(x,y) = \sup \{ \sigma_i(x,y) \mid i \in I \}$$

defines an L-pseudo-metric on X as well.

Proof. Only the triangle inequality has to be shown. For all $x, y, z \in X$ and all $i \in I$, we have

$$\sigma_i(x,y) \le \sigma_i(x,z) + \sigma_i(z,y) \le \sigma(x,z) + \sigma(z,y),$$

and then $\sigma(x,y) \leq \sigma(x,z) + \sigma(z,y)$. Hence, σ is an L-pseudo-metric on X. \square

Here, we have shown this fact.

Lemma 3.3 Any L-pseudo-metric ϱ on a set X is an L-metric on X if and only if (X, τ_{ϱ}) is a GT_0 -space.

Proof. Let $x, y \in X$ and $y \neq x$. Since (X, τ_{ϱ}) is a GT_0 -space, then there exists $\mu \in L^X$ such that $\mu(x) < \beta \leq \inf_{\tau_{\varrho}} \mu(y)$ for some $\beta \in L_0$. From the definition of the base of τ_{ϱ} , since

$$\operatorname{int}_{\tau_{\varrho}}\mu(z) = \overline{\alpha} \wedge R^{\delta}|_{\mathbf{R}_{L}^{*}}(\varrho(x,z)) = \alpha \wedge (\bigvee_{\eta > \delta} \varrho(x,z)(\eta))'$$

for all $z \in X$ and for some $\alpha \in L$, then $\varrho(x,y) = 0^{\sim}$ implies that $\operatorname{int}_{\tau_{\varrho}} \mu(y) = \alpha \wedge 1 = \alpha$ for all $y \in X$ and all $\mu \in L^X$. Hence,

$$\alpha = \operatorname{int}_{\tau_{\varrho}} \mu(x) \le \mu(x) < \beta \le \operatorname{int}_{\tau_{\varrho}} \mu(y) = \alpha,$$

that is, $\alpha < \beta \leq \alpha$ which is a contradiction, and thus x = y and ϱ is an L-metric.

Now, let $x \neq y$ and so $\varrho(x,y) \neq 0^{\sim}$, then there exists $\alpha > 0$ such that $\varrho(x,y)(\alpha) > 0$ and hence taking $\nu = \overline{1} \wedge R^{\delta}|_{\mathbf{R}_{L}^{*}} \circ \varrho_{x} \in L^{X}$, we get that

$$\nu(y) = 1 \wedge R^{\delta}(\varrho(x,y)) = 1 \wedge (\bigvee_{\eta \ge \delta} \varrho(x,z)(\eta))' < 1$$

whenever δ is chosen to be a very small number tends to zero. But $\inf_{\tau_{\varrho}} \nu(x) = 1 \wedge (\bigvee_{\eta \geq \delta} \varrho(x, x)(\eta))' = 1$. Hence, (X, τ_{ϱ}) is a GT_0 -space. \square

4. On *L*-uniform spaces

An L-filter \mathcal{U} on $X \times X$ is called L-uniform structure on X [15] if the following conditions are fulfilled:

- (U1) $(x,x)^{\cdot} \leq \mathcal{U}$ for all $x \in X$;
- (U2) $U = U^{-1}$;
- (U3) $\mathcal{U} \circ \mathcal{U} \leq \mathcal{U}$.

Where $(x,x)^{\bullet}(u) = u(x,x)$, $\mathcal{U}^{-1}(u) = \mathcal{U}(u^{-1})$ and $(\mathcal{U} \circ \mathcal{U})(u) = \bigvee_{v \circ w \leq u} (\mathcal{U}(w) \wedge \mathcal{V}(v))$ for all $u \in L^{X \times X}$, and $u^{-1}(x,y) = u(y,x)$ and $(v \circ w)(x,y) = \bigvee_{z \in X} (w(x,z) \wedge v(z,y))$ for all $x,y \in X$.

A set X equipped with an L-uniform structure \mathcal{U} is called an L-uniform space. A mapping $f:(X,\mathcal{U})\to (Y,\mathcal{V})$ between L-uniform spaces (X,\mathcal{U}) and (Y,\mathcal{V}) is said to be L-uniformly continuous (or $(\mathcal{U},\mathcal{V})$ -continuous) provided

$$\mathcal{F}_L(f \times f)(\mathcal{U}) \leq \mathcal{V}$$

holds. For each L-uniform structure \mathcal{U} on X is associated a stratified L-topology $\tau_{\mathcal{U}}$. The related interior operator $\operatorname{int}_{\mathcal{U}}$ is given by:

$$(\operatorname{int}_{\mathcal{U}}\lambda)(x) = \mathcal{U}[\dot{x}](\lambda)$$

for all $x \in X$ and all $\lambda \in L^X$, where $\mathcal{U}[\dot{x}](\lambda) = \bigvee_{u[\mu] \leq \lambda} (\mathcal{U}(u) \wedge \mu(x))$ and $u[\mu](x) = \bigvee_{y \in X} (\mu(y) \wedge u(y,x))$. For all $x \in X$ and all $\lambda \in L^X$ we have

$$\mathcal{U}[\dot{x}] = \mathcal{N}(x) \text{ and } \mathcal{U}[\dot{\lambda}] = \mathcal{N}(\lambda),$$

where $\mathcal{N}(x)$ and $\mathcal{N}(\lambda)$ are the *L*-neighborhood filters of the space $(X, \tau_{\mathcal{U}})$ at x and λ , respectively.

Let \mathcal{U} be an L-uniform structure on a set X. Then $u \in L^{X \times X}$ is called a surrounding provided $\mathcal{U}(u) \geq \alpha$ for some $\alpha \in L_0$ and $u = u^{-1}$. A surrounding $u \in L^{X \times X}$ is called left (right) invariant provided

$$u(ax, ay) = u(x, y)$$
 $(u(xa, ya) = u(x, y))$ for all $a, x, y \in X$.

 \mathcal{U} is called a *left* (right) invariant L-uniform structure if \mathcal{U} has a valued L-filter base consists of left (right) invariant surroundings [9].

L-topological groups. In the following we focus our study on a multiplicative group G. We denote, as usual, the identity element of G by e and the inverse of an

element a of G by a^{-1} . Let G be a group and τ an L-topology on G. Then (G, τ) will be called an L-topological group [1, 5] if the mappings

$$\pi: (G \times G, \tau \times \tau) \to (G, \tau)$$
 defined by $\pi(a, b) = ab$ for all $a, b \in G$

and

$$i:(G,\tau)\to (G,\tau)$$
 defined by $i(a)=a^{-1}$ for all $a\in G$

are L-continuous. π and i are the binary operation and the unary operation of the inverse on G, respectively.

For all $\lambda \in L^G$, the inverse λ^i of λ with respect to the unary operation i on G is the L-set $\lambda \circ i$ in G defined by [9]

$$\lambda^i(x) = \lambda(x^{-1})$$
 for all $x \in G$.

Below, we give some examples of L-topological groups as in [5].

Example 4.1 For a group G, the induced L-topological space $(G, \omega_L(T))$ of the usual topological group (G, T) is an L-topological group.

Example 4.2 The *L*-real line R_L with $L = \{0, 1\}$ equipped with the *L*- addition, defined in [20], and the *L*-topology on R_L is an *L*-topological group.

Proposition 4.1 [9] Let (G, τ) be an L-topological group. Then there exist on G a unique left invariant L-uniform structure \mathcal{U}^l and a unique right invariant L-uniform structure \mathcal{U}^r compatible with τ , constructed using the family $(\alpha \operatorname{-pr} \mathcal{N}(e))_{\alpha \in L_0}$ of all filters $\alpha \operatorname{-pr} \mathcal{N}(e)$, where $\mathcal{N}(e)$ is the L-neighborhood filter at the identity element e of (G, τ) , as follows:

$$\mathcal{U}^{l}(u) = \bigvee_{v \in \mathcal{U}_{\alpha}^{l}, v \leq u} \alpha \qquad and \qquad \mathcal{U}^{r}(u) = \bigvee_{v \in \mathcal{U}_{\alpha}^{r}, v \leq u} \alpha, \tag{4.1}$$

where

$$\mathcal{U}_{\alpha}^{l} = \alpha \operatorname{-pr} \mathcal{U}^{l} \qquad and \qquad \mathcal{U}_{\alpha}^{r} = \alpha \operatorname{-pr} \mathcal{U}^{r}$$
 (4.2)

are defined by

$$\mathcal{U}_{\alpha}^{l} = \{ u \in L^{G \times G} \mid u(x, y) = (\lambda \wedge \lambda^{i})(x^{-1}y) \text{ for some } \lambda \in \alpha\text{-pr}\,\mathcal{N}(e) \}$$
 (4.3)

and

$$\mathcal{U}_{\alpha}^{r} = \{ u \in L^{G \times G} \mid u(x, y) = (\lambda \wedge \lambda^{i})(xy^{-1}) \text{ for some } \lambda \in \alpha\text{-pr}\,\mathcal{N}(e) \}$$
 (4.4)

We should notice that we shall fix the notations \mathcal{U}^l , \mathcal{U}^r , \mathcal{U}^l_{α} and \mathcal{U}^r_{α} along the paper to be these defined above.

Remark 4.1 (cf. [9]) For the *L*-topological group (G, τ) , the elements u of \mathcal{U}_{α}^{l} (\mathcal{U}_{α}^{r}) are left (right) invariant surroundings. Moreover, $(\mathcal{U}_{\alpha}^{l})_{\alpha \in L_{0}}$ ($(\mathcal{U}_{\alpha}^{r})_{\alpha \in L_{0}}$) is a valued *L*-filter base for the left (right) invariant *L*-uniform structure \mathcal{U}^{l} (\mathcal{U}^{r}) defined by (4.1) - (4.4), respectively.

L-topogenous orders. A binary relation \ll on L^X is said to be an *L*-topogenous order on X [17] if the following conditions are fulfilled:

- (1) $\overline{0} \ll \overline{0}$ and $\overline{1} \ll \overline{1}$;
- (2) $\lambda \ll \mu$ implies $\lambda \leq \mu$;
- (3) $\lambda_1 \leq \lambda \ll \mu \leq \mu_1 \text{ implies } \lambda_1 \ll \mu_1;$
- (4) From $\lambda_1 \ll \mu_1$ and $\lambda_2 \ll \mu_2$ it follows $\lambda_1 \vee \lambda_2 \ll \mu_1 \vee \mu_2$ and $\lambda_1 \wedge \lambda_2 \ll \mu_1 \wedge \mu_2$.

An L-topogenous order \ll is said to be regular or is said to be an L-topogenous structure if for all $\lambda, \mu \in L^X$ with $\lambda \ll \mu$ there is a $\nu \in L^X$ such that $\lambda \ll \nu$ and $\nu \ll \mu$ hold, and \ll is called complementarily symmetric if $\lambda \ll \mu$ implies $\mu' \ll \lambda'$ for all $\lambda, \mu \in L^X$ and moreover \ll is called perfect if for each family $(\lambda_i)_{i \in I}$ of L-subsets of X with $\lambda_i \ll \mu$ for all $i \in I$ it follows $\bigvee_{i \in I} \lambda_i \ll \mu$.

Let (\ll_n) be a sequence of L-topogenous structures on X and (\prec_n) a sequence of L-topogenous structures on I_L . Then an L-real function $f: X \to I_L$ is said to be associated with the sequence (\ll_n) if for all $\lambda, \mu \in L^{I_L}$, $\lambda \prec_n \mu$ implies $(\lambda \circ f) \ll_{n+1} (\mu \circ f)$ for every positive integer n [6].

Now, suppose that (G, τ) has a countable L-neighborhood filter $\mathcal{N}(e)$ at the identity e. Since any L-topological group, from Proposition 4.1, is uniformizable, then the left and the right invariant L-uniform structures \mathcal{U}^l and \mathcal{U}^r , constructed also in Proposition 4.1, has, from Remark 4.1, a countable L-filter base $\mathcal{U}^l_{\frac{1}{n}}$ and $\mathcal{U}^r_{\frac{1}{n}}$, respectively, $n \in \mathbf{N}$.

Lemma 4.1 [4] For all $\lambda, \mu \in L^X$, we have

$$\lambda \leq \mu$$
 if and only if $\dot{\lambda} \leq \dot{\mu}$.

Here, we prove this interesting result.

Lemma 4.2 Let \mathcal{U} be an L-uniform structure on a set X, and define a binary relation on L^X as follows:

$$\lambda \ll_{\mathcal{U}} \mu \iff \mathcal{U}[\dot{\lambda}] \leq \dot{\mu}$$

for all $\lambda, \mu \in L^X$. Then $\ll_{\mathcal{U}}$ is a complementarily symmetric perfect L-topogenous order on X.

Proof. From the properties of \mathcal{U} as an L-filter, (2.1) and Lemma 4.1 we get easily that $\ll_{\mathcal{U}}$ fulfills all the required conditions. \square

Proposition 4.2 [17] There is a one - to - one correspondence between the perfect L-topogenous structures \ll on a set X and the L-topologies τ on X. This correspondence is given by

$$\lambda \ll \mu \iff \lambda \leq \nu \leq \mu \text{ for some } \nu \in \tau$$

for all $\lambda, \mu \in L^X$ and

$$\tau \ = \ \{ \, \lambda \in L^X \mid \lambda \ll \lambda \, \}.$$

Now we have the following result.

Proposition 4.3 Suppose that \mathcal{U} and $(\mathcal{U}_{\frac{1}{n}})_{n\in\mathbb{N}}$ are an L-uniform structure on X and its countable L-filter base, respectively, and also consider \mathcal{V} an L-uniform structure on I_L . Let $(\ll_n)_{n\in\mathbb{N}}$ denote a sequence of complementarily symmetric perfect L-topogenous structures on X for which $\lambda \ll_n \mu \iff \mathcal{U}[\dot{\lambda}] \leq \dot{\mu}$ for all $\lambda, \mu \in L^X$, and let Φ be the family of all L-uniformly continuous functions $h: (X,\mathcal{U}) \to (I_L,\mathcal{V})$ associated with $(\ll_n)_{n\in\mathbb{N}}$. Then the mapping $\sigma_{\mathcal{U}}: X \times X \to I_L$ defined by

$$\sigma_{\mathcal{U}}(x,y) = \sup \{ \sigma_f(x,y) \mid f \in \Phi \},$$

where $\sigma_f(x,y) = (f(x) - f(y))^+$ for all $x, y \in X$, is an L-pseudo-metric on X and $\tau_{\mathcal{U}} = \tau_{\sigma_{\mathcal{U}}}$.

Proof. The proof of that $\sigma_{\mathcal{U}}$ is an *L*-pseudo-metric on *X* comes from Lemma 3.1, Lemma 3.2, and Lemma 4.2.

Since for any $\lambda \in L^X$, and from Proposition 4.2

$$\lambda \ll_n \lambda \iff \mathcal{U}[\dot{\lambda}] \leq \dot{\lambda}$$

means that $\lambda \in \tau_{\mathcal{U}}$ if and only if $\lambda \in \tau_{\sigma_{\mathcal{U}}}$, where $\sigma_{\mathcal{U}}$ is generated by all the *L*-pseudometrics σ_h for every h associated with \ll_n . Hence, $\tau_{\mathcal{U}} = \tau_{\sigma_{\mathcal{U}}}$. \square

5. The metrizability of L-topological groups

This section is devoted to show that any (separated) L-topological group is pseudo-metrizable (metrizable).

An L-topological group (G, τ) is called *separated* if for the identity element e, we have $\bigwedge_{\lambda \in \alpha \text{-pr}\mathcal{N}(e)} \lambda(e) \geq \alpha$, and $\bigwedge_{\lambda \in \alpha \text{-pr}\mathcal{N}(e)} \lambda(x) < \alpha$ for all $x \in G$ with $x \neq e$ and for all $\alpha \in L_0$ [9].

Proposition 5.1 [9] Any (separated) L-topological group is a $(GT_{3\frac{1}{2}}$ -space) completely regular space.

Now, we are going to show the main result in this paper.

Proposition 5.2 Any (separated) L-topological group (G, τ) is pseudo-metrizable (metrizable).

Proof. From Proposition 4.1, we have unique left and unique right L-uniform structures \mathcal{U}^l and \mathcal{U}^r on G defined by (4.1) such that $\tau = \tau_{\mathcal{U}^l} = \tau_{\mathcal{U}^r}$. Proposition 4.3 implies that $\tau = \tau_{\mathcal{U}^l} = \tau_{\sigma_{\mathcal{U}^l}}$ and $\tau = \tau_{\mathcal{U}^r} = \tau_{\sigma_{\mathcal{U}^r}}$, and therefore (G, τ) is pseudometrizable.

Also, if (G, τ) is separated, then from Proposition 5.1, we get that (G, τ) is a GT_0 -space, and hence, from Lemma 3.3, we have that (G, τ) is metrizable. \square

We also have the following important result.

Proposition 5.3 Let (G, τ) be a (separated) L-topological group. Then the following statements are equivalent.

- (1) τ is pseudo-metrizable (metrizable);
- (2) e has a countable L-neighborhood filter $\mathcal{N}(e)$;
- (3) τ can be induced by a left invariant L-pseudo-metric (L-metric);
- (4) τ can be induced by a right invariant L-pseudo-metric (L-metric).

Proof.

- $(1) \Rightarrow (2)$: Follows from Proposition 3.1
- (2) \Rightarrow (3): Let e has a countable L-neighborhood filter $\mathcal{N}(e)$, and let $\mathcal{U}^l_{\frac{1}{n}}$ be a countable L-filter base of the left invariant L-uniform structure \mathcal{U}^l , defined by (4.1), which is compatible with τ . Then, from Lemma 4.2, $\lambda \ll_{\mathcal{U}^l} \mu \Leftrightarrow \mathcal{U}^l[\dot{\lambda}] \leq \dot{\mu}$ for all $\lambda, \mu \in L^G$ defines a sequence of complementarily symmetric perfect L-topogenous structures on G. Taking \mathcal{V} as an L-uniform structure on I_L and Φ as the family of all L-uniformly continuous functions $h: (G, \mathcal{U}^l) \to (I_L, \mathcal{V})$ associated with $\ll_{\mathcal{U}^l}$, we get, from Proposition 4.3, that the L-mapping $\sigma: G \times G \to I_L$ defined by $\sigma(x,y) = \sup\{(f(x) f(y))^+ \mid f \in \Phi\}$ is an L-pseudo-metric on G and $\tau = \tau_{\mathcal{U}^l} = \tau_{\sigma_{\mathcal{U}^l}}$.

Now, we define $h_a: G \to I_L$ by $h_a(x) = h(ax)$ for all $a, x \in G$. From $h \in \Phi$ is L-uniformly continuous, that is, $\mathcal{F}_L(h \times h)(\mathcal{U}^l) \leq \mathcal{V}$ and that the elements of $\mathcal{U}_{\frac{1}{2}}^l$ are

left invariant from Remark 4.1, and from (4.1), we have

$$\mathcal{F}_{L}(h_{a} \times h_{a})\mathcal{U}^{l}(v) = \mathcal{U}^{l}(v \circ (h_{a} \times h_{a}))$$

$$= \bigvee_{u \in \mathcal{U}^{l}_{\frac{1}{n}}, u \leq v \circ (h_{a} \times h_{a})} \alpha$$

$$= \bigvee_{u \in \mathcal{U}^{l}_{\frac{1}{n}}, u \leq v \circ (h \times h)} \alpha$$

$$= \mathcal{F}_{L}(h \times h)\mathcal{U}^{l}(v)$$

$$\geq \mathcal{V}(v).$$

Hence, h_a is L-uniformly continuous associated with $\ll_{\mathcal{U}^l}$, that is, $h_a \in \Phi$. Thus

$$\sigma(ax, ay) = \sup\{(h(ax) - h(ay))^+ \mid h \in \Phi\}$$

$$= \sup\{(h_a(x) - h_a(y))^+ \mid h \in \Phi\}$$

$$\leq \sup\{(k(x) - k(y))^+ \mid k \in \Phi\}$$

$$= \sigma(x, y).$$

Applying the same for a^{-1} instead of a, we get that

$$\sigma(x,y) = \sigma(a^{-1}ax, a^{-1}ay) \le \sigma(ax, ay).$$

That is, $\sigma(ax, ay) = \sigma(x, y)$ for all $a, x, y \in G$ and then σ is a left invariant L-pseudo-metric on G inducing τ .

- $(2) \Rightarrow (4)$: By a similar proof as in the case $(2) \Rightarrow (3)$.
- $(3) \Rightarrow (1)$ and $(4) \Rightarrow (1)$: Obvious.

The proposition is still true if we consider the parentheses. \Box

Example 5.1 From Proposition 5.2, we can deduce that any L-topological group (G, τ) on which there can be constructed an L-uniform structure \mathcal{U} compatible with τ is pseudo-metrizable in general and is metrizable whenever (G, τ) is separated.

References

- [1] T. M. G. Ahsanullah; On fuzzy neighborhood groups, J. Math. Anal. Appl. 130 (1988) 237 251.
- [2] F. Bayoumi, I. Ibedou; T_i -spaces, I, The Journal of The Egyptian Mathematical Society 10 (2002) 179 199.
- [3] F. Bayoumi, I. Ibedou; T_i -spaces, II, The Journal of The Egyptian Mathematical Society 10 (2002) 201 215.

- [4] F. Bayoumi, I. Ibedou; The relation between the GT_i -spaces and fuzzy proximity spaces, G-compact spaces, fuzzy uniform spaces, The Journal of Chaos, Solitons and Fractals 20 (2004) 955 966.
- [5] F. Bayoumi; On initial and final L-topological groups, Fuzzy Sets and Systems 156 (2005) 43 54.
- [6] F. Bayoumi, I. Ibedou; $GT_{\frac{3}{2}}$ -spaces, I, The Journal of the Egyptian Mathematical Society, Accepted for publication November 1, 2005.
- [7] F. Bayoumi, I. Ibedou; $GT_{3\frac{1}{2}}$ -spaces, II, The Journal of the Egyptian Mathematical Society, Accepted for publication November 1, 2005.
- [8] F. Bayoumi, I. Ibedou; $GT_{2\frac{1}{2}}$ -spaces, GT_5 -spaces and GT_6 -spaces, submitted.
- [9] F. Bayoumi, I. Ibedou; The uniformizability of L-topological groups, submitted.
- [10] C. H. Chang; Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182 190.
- [11] P. Eklund, W. Gähler; Fuzzy filter functors and convergence, in: S. E. Rodabaugh, E. P. Klement, U.Höhle; Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, (1992) 109 - 136.
- [12] S. Gähler, W. Gähler; Fuzzy real numbers, Fuzzy Sets and Systems 66 (1994) 137 158.
- [13] W. Gähler; The general fuzzy filter approach to fuzzy topology, I, Fuzzy Sets and Systems 76 (1995) 205 224.
- [14] W. Gähler; The general fuzzy filter approach to fuzzy topology, II, Fuzzy Sets and Systems 76 (1995) 225-246.
- [15] W. Gähler, F. Bayoumi, A. Kandil, A. Nouh; The theory of global fuzzy neighborhood structures, III, Fuzzy uniform structures, Fuzzy Sets and Systems 98 (1998) 175 -199.
- [16] J. A. Goguen; L-fuzzy sets, J. Math. Anal. Appl. 18 (1967) 145 174.
- [17] A. K. Katsaras, C. G. Petalas; On fuzzy syntopogenous structures, J. Math. Anal. Appl. 99 (1984) 219 - 236.
- [18] R. Lowen; Convergence in fuzzy topological spaces, General Topol. Appl. 10 (1979) 147 160.
- [19] S. E. Rodabaugh, E. P. Klement, U.Höhle; Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, (1992) 109 136.
- [20] L. A. Zadeh; Fuzzy sets, Information and Control 8 (1965) 338 353.