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Abstract
This paper studies the metrizability of the notion of L-topological groups defined by Ahsanul-

lah. We show that for any (separated) L-topological group there is an L-pseudo-metric (L-metric),
in sense of Gähler which is defined using his notion of L-real numbers, compatible with the L-
topology of this (separated) L-topological group. That is, any (separated) L-topological group is
pseudo-metrizable (metrizable).
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1. Introduction

The notion of L-real numbers is defined and studied by S. Gähler and W. Gähler
in [12]. RL denotes the set of all L-real numbers. The subset R∗

L of RL of all positive
L-real numbers is used to define the L-pseudo-metric (L-metric) on a set X, by the
same authors in [12], as a mapping of the cartesian product X × X to R∗

L which
satisfies similar conditions to the conditions of the usual metric. In this paper, we
study the metrizability, using the L-pseudo-metric (L-metric) in sense of [12], of a
notion of L-topological group which is introduced in [1] and studied in [5]. This
L-topological group is defined as a group equipped with an L-topology such that
both the binary operation and the unary operation of the inverse are L-continuous
with respect to this L-topology.

In this paper, using the uniformizability of L-topological groups introduced by
the authors in [9], we show that any (separated) L-topological group is pseudo-
metrizable (metrizable). In [9] is used the L-uniform structures which are defined
in [15] on a set X, in a similar way to the usual case, as L-filters on X ×X.

In Section 2 of this paper we recall some results on L-filters, L-real numbers
defined by Gähler in [11, 12, 13, 14], and some separation axioms defined by the
authors in [2, 3, 6, 7, 8].

Sections 3 and 4 introduce and show some results on L-metric and L-uniform
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spaces, respectively, which are needed to show the metrizability of L-topological
groups.

In Section 5 we show that the L-pseudo-metric (L-metric), in sense of [12], in-
duces the L-topology of a (separated) L-topological group, that is, any (separated)
L-topological group is pseudo-metrizable (metrizable).

2. On L-filters

Here we recall some ideas concerning L-filters needed in this paper. Denote
by LX the set of all L-subsets of a non-empty set X, where L is a complete chain
with different least and greatest elements 0 and 1, respectively [20]. For each L-set
λ ∈ LX , let λ′ denote the complement of λ, defined by λ′(x) = λ(x)′ for all x ∈ X.
For all x ∈ X and α ∈ L0, the L-subset xα of X whose value is α at x and 0
otherwise is called an L-point in X and the constant L-subset of X with value α
will be denoted by α.

L-filters. By an L-filter on a non-empty set X we mean [13] a mapping M :
LX → L such that M(α) ≤ α for all α ∈ L and M( 1 ) = 1, and also M(λ ∧ µ) =
M(λ) ∧M(µ) for all λ, µ ∈ LX . M is called homogeneous [11] if M(α) = α for
all α ∈ L. If M and N are L-filters on X, M is called finer than N , denoted by
M≤ N , provided M(λ) ≥ N (λ) holds for all λ ∈ LX .

Let FLX denote the set of all L-filters on X, f : X → Y a mapping and M,
N are L-filters on X, Y , respectively. Then the image of M and the preimage of
N with respect to f are the L-filters FLf(M) on Y and F−

L f(N ) on X defined by
FLf(M)(µ) = M(µ ◦ f) for all µ ∈ LY and F−

L f(N )(λ) =
∨

µ◦f≤λ
N (µ) for all

λ ∈ LX , respectively. For each mapping f : X → Y and each L-filter N on Y , for
which the preimage F−

L f(N ) exists, we have FLf(F−
L f(N )) ≤ N . Moreover, for

each L-filter M on X, the inequality M≤ F−
L f(FLf(M)) holds [13].

For any set A of L-filters on X, the infimum
∧

M∈A
M, with respect to the finer

relation on L-filters, does not exist in general. The infimum
∧

M∈A
M of A exists if

and only if for each non-empty finite subset {M1, . . . ,Mn} of A we have M1(λ1)∧
· · · ∧Mn(λn) ≤ sup(λ1 ∧ · · · ∧ λn) for all λ1, . . . , λn ∈ LX [11]. If the infimum of A
exists, then for each λ ∈ LX and n as a positive integer we have

(
∧

M∈A

M)(λ) =
∨

λ1∧···∧λn≤λ,
M1,...,Mn∈A

(M1(λ1) ∧ · · · ∧Mn(λn)).

By a filter on X we mean a non-empty subset F of LX which does not contain
0 and closed under finite infima and super sets [18]. For each L-filter M on X, the
subset α-prM of LX defined by: α-prM = {λ ∈ LX | M(λ) ≥ α} is a filter on
X.
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A family (Bα)α∈L0 of non-empty subsets of LX is called valued L-filter base on
X [13] if the following conditions are fulfilled:

(V1) λ ∈ Bα implies α ≤ supλ.

(V2) For all α, β ∈ L0 and all L-sets λ ∈ Bα and µ ∈ Bβ, if even α ∧ β > 0 holds,
then there are a γ ≥ α ∧ β and an L-set ν ≤ λ ∧ µ such that ν ∈ Bγ.

Each valued L-filter base (Bα)α∈L0 on a set X defines an L-filter M on X by:
M(λ) =

∨
µ∈Bα, µ≤λ

α for all λ ∈ LX . On the other hand, each L-filterM can be gener-

ated by many valued L-filter bases, and among them the greatest one (α-prM)α∈L0 .

L-neighborhood filters. In the following, in sense of [10, 16], the topology
will be used and will be called L-topology. intτ and clτ denote the interior and
the closure operators with respect to the L-topology τ , respectively. For each L-
topological space (X, τ) and each x ∈ X the mapping N (x) : LX → L defined by:
N (x)(λ) = intτλ(x) for all λ ∈ LX is an L-filter on X, called the L-neighborhood
filter of the space (X, τ) at x, and the mapping ẋ : LX → L defined by ẋ(λ) = λ(x)
for all λ ∈ LX is a homogeneous L-filter on X. Let (X, τ) and (Y, σ) be two L-
topological spaces. Then the mapping f : (X, τ) → (Y, σ) is called L-continuous (or
(τ, σ)-continuous) provided intσµ ◦ f ≤ intτ (µ ◦ f) for all µ ∈ LY [14].

The L-neighborhood filter N (F ) at an ordinary subset F of X is the L-filter on
X defined, by the authors in [3], by means of N (x), x ∈ F as: N (F ) =

∨
x∈F

N (x).

The L-filter Ḟ is defined by: Ḟ =
∨

x∈F
ẋ. Ḟ ≤ N (F ) holds for all subsets F of X.

Recall also here the L-filter λ̇ and the L-neighborhood filter N (λ) at an L-subset λ
of X which are defined by

λ̇ =
∨

0<λ(x)

ẋ and N (λ) =
∨

0<λ(x)

N (x), (2.1)

respectively. λ̇ ≤ N (λ) holds for all λ ∈ LX [4].

L-real numbers. By an L-real number is meant [12] a convex, normal, com-
pactly supported and upper semi-continuous L-subset of the set of all real numbers
R. The set of all L-real numbers is denoted by RL. R is canonically embedded into
RL, identifying each real number a with the crisp L-number a∼ defined by a∼(ξ) = 1
if ξ = a and 0 otherwise. The set of all positive L-real numbers is defined and de-
noted by: R∗

L = {x ∈ RL | x(0) = 1 and 0∼ ≤ x} and let IL = {x ∈ R∗
L | x ≤ 1∼},

where I = [0, 1] is the real unit interval. Notice that, with ≤ we mean that the
binary operation on RL defined by

x ≤ y ⇔ xα1 ≤ yα1 and xα2 ≤ yα2

for all x, y ∈ RL where xα1 = inf{z ∈ R | x(z) ≥ α} and xα2 = sup{z ∈ R |
x(z) ≥ α} for all x ∈ RL and for all α ∈ L0. It is shown in [13] that the class
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{Rδ|IL
| δ ∈ I } ∪ {Rδ|IL

| δ ∈ I } ∪ { 0∼|IL
} is a base for an L-topology

= on IL, where Rδ and Rδ are the L-subsets of RL defined by Rδ(x) =
∨

α>δ
x(α)

and Rδ(x) = (
∨

α≥δ
x(α))′ for all x ∈ RL and δ ∈ R and note that Rδ|IL

, Rδ|IL
are

the restrictions of Rδ, Rδ on IL, respectively. Recall also that x ± y are L-real
numbers defined by (x ± y)(ξ) =

∨
η, ζ∈R , η±ζ=ξ

(x(η) ∧ y(ζ)) for all ξ ∈ R. (RL, +)

is a commutative semi group with identity element 0∼. The positive part x+ of an
L-real number x is defined as x+ = 0∼ ∨ x, where

x− x = 0∼, (x + y)+ ≤ x+ + y+. (2.2)

GTi-spaces. An L-topological space (X, τ) is called [2, 6]:

(1) GT0 if for all x, y ∈ X with x 6= y we have ẋ 6≤ N (y) or ẏ 6≤ N (x).

(2) GT1 if for all x, y ∈ X with x 6= y we have ẋ 6≤ N (y) and ẏ 6≤ N (x).

(3) completely regular if for all x 6∈ F and F = clτF , there exists an L-continuous
mapping f : (X, τ) → (IL,=) such that f(x) = 1 and f(y) = 0 for all y ∈ F .

(4) GT3 1
2

( or L-Tychonoff ) if it is GT1 and completely regular.

Proposition 2.1 [2, 3, 6, 7, 8] Every GTi-space is GTi−1-space for all i = 1, 2, 3, 4, 5, 6.
Moreover, the implications between GT2-spaces, GT2 1

2
-spaces, GT3-spaces, GT3 1

2
-

spaces and GT4-spaces goes as expected.

3. Some results on L-metric spaces

A mapping % : X ×X −→ R∗
L is called an L-metric [12] on X if the following

conditions are fulfilled:

(1) %(x, y) = 0∼ if and only if x = y

(2) %(x, y) = %(y, x)

(3) %(x, y) ≤ %(x, z) + %(z, y).

If % : X × X −→ R∗
L satisfies the conditions (2) and (3) and the following

condition:

(1)′ %(x, y) = 0∼ if x = y
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then it is called an L-pseudo-metric on X.

A set X equipped with an L-pseudo-metric (L-metric) % on X is called an L-
pseudo-metric (L-metric) space.

To each L-pseudo-metric (L-metric) % on a set X is generated canonically a
stratified L-topology τ% on X which has {ε ◦ %x | ε ∈ E , x ∈ X} as a base, where
%x : X → R∗

L is the mapping defined by %x(y) = %(x, y) and

E = {α ∧Rδ|R∗
L
| δ > 0, α ∈ L } ∪ {α | α ∈ L },

here α has R∗
L as domain.

An L-topological space (X, τ) is called pseudo-metrizable (metrizable) if there is
an L-pseudo-metric (L-metric) % on X inducing τ , that is, τ = τ%.

An L-pseudo-metric % is called left (right) invariant if

%(x, y) = %(ax, ay) (%(x, y) = %(xa, ya)) for all a, x, y ∈ X.

An L-set λ ∈ LX is called countable (finite) if its support is countable (finite),
where the support of λ is the set {x ∈ X | 0 < λ(x)}.

Let us call an L-filter M on a set X countable if the sets α-prM are countable
for all α ∈ L0.

Definition 3.1 An L-topological space (X, τ) is called first countable if every point
x ∈ X has a countable L-neighborhood filter N (x).

Proposition 3.1 For any L-pseudo-metric % on a set X, if τ% is the L-topology
associated with %, then (X, τ%) is a first countable space.

Proof. Since {ε ◦ %x | ε ∈ E , x ∈ X} is a base for τ%, then for all n ∈ N, the set

Bn = {εn ◦ %x | εn ∈ E , x ∈ X}, where εn = 1
n
∧ Rδ|R∗

L
, is the 1

n
-prN (x), which

implies that there exists a countable L-neighborhood filter N (x) at every point
x ∈ X. Hence, (X, τ%) is a first countable space. 2

By an L-function family Φ on a set X, we mean the set of all L-real functions
f : X → IL.

We also have the following results.

Lemma 3.1 Let Φ be an L-function family on X and σf : X×X → IL is a mapping
defined by

σf (x, y) = (f(x)− f(y))+, f ∈ Φ.

Then σf is an L-pseudo-metric on X.
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Proof. Clearly, σf (x, y) = σf (y, x). From (2.2), we get that σf (x, x) = (f(x) −
f(x))+ = 0∼ for all x ∈ X, and moreover

σf (x, y) = (f(x)− f(y))+ ≤ (f(x)− f(z))+ + (f(z)− f(y))+ = σf (x, z) + σf (z, y).

Hence, σf is an L-pseudo-metric on X. 2

Lemma 3.2 Let σi : X×X → IL, i ∈ I be an arbitrary set of L-pseudo-metrics on
the set X. Then

σ(x, y) = sup{σi(x, y) | i ∈ I}
defines an L-pseudo-metric on X as well.

Proof. Only the triangle inequality has to be shown. For all x, y, z ∈ X and all
i ∈ I, we have

σi(x, y) ≤ σi(x, z) + σi(z, y) ≤ σ(x, z) + σ(z, y),

and then σ(x, y) ≤ σ(x, z) + σ(z, y). Hence, σ is an L-pseudo-metric on X. 2

Here, we have shown this fact.

Lemma 3.3 Any L-pseudo-metric % on a set X is an L-metric on X if and only if
(X, τ%) is a GT0-space.

Proof. Let x, y ∈ X and y 6= x. Since (X, τ%) is a GT0-space, then there exists
µ ∈ LX such that µ(x) < β ≤ intτ%µ(y) for some β ∈ L0. From the definition of
the base of τ%, since

intτ%µ(z) = α ∧Rδ|R∗
L
(%(x, z)) = α ∧ (

∨

η≥δ

%(x, z)(η))′

for all z ∈ X and for some α ∈ L, then %(x, y) = 0∼ implies that intτ%µ(y) = α∧1 = α
for all y ∈ X and all µ ∈ LX . Hence,

α = intτ%µ(x) ≤ µ(x) < β ≤ intτ%µ(y) = α,

that is, α < β ≤ α which is a contradiction, and thus x = y and % is an L-metric.

Now, let x 6= y and so %(x, y) 6= 0∼, then there exists α > 0 such that %(x, y)(α) >
0 and hence taking ν = 1 ∧Rδ|R∗

L
◦ %x ∈ LX , we get that

ν(y) = 1 ∧Rδ(%(x, y)) = 1 ∧ (
∨

η≥δ

%(x, z)(η))′ < 1

whenever δ is chosen to be a very small number tends to zero. But intτ%ν(x) =
1 ∧ (

∨
η≥δ

%(x, x)(η))′ = 1. Hence, (X, τ%) is a GT0-space. 2
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4. On L-uniform spaces

An L-filter U on X ×X is called L-uniform structure on X [15] if the following
conditions are fulfilled:

(U1) (x, x)
. ≤ U for all x ∈ X;

(U2) U = U−1;

(U3) U ◦ U ≤ U .

Where (x, x)
.
(u) = u(x, x), U−1(u) = U(u−1) and (U ◦U)(u) =

∨
v◦w≤u

(U(w)∧V(v))

for all u ∈ LX×X , and u−1(x, y) = u(y, x) and (v ◦w)(x, y) =
∨

z∈X
( w(x, z)∧ v(z, y))

for all x, y ∈ X.

A set X equipped with an L-uniform structure U is called an L-uniform space.
A mapping f : (X,U) → (Y,V) between L-uniform spaces (X,U) and (Y,V) is said
to be L-uniformly continuous (or (U ,V)-continuous) provided

FL(f × f)(U) ≤ V

holds. For each L-uniform structure U on X is associated a stratified L-topology
τU . The related interior operator intU is given by:

(intUλ)(x) = U [ẋ](λ)

for all x ∈ X and all λ ∈ LX , where U [ẋ](λ) =
∨

u[µ]≤λ
(U(u) ∧ µ(x)) and u[µ](x) =

∨
y∈X

(µ(y) ∧ u(y, x)). For all x ∈ X and all λ ∈ LX we have

U [ẋ] = N (x) and U [λ̇] = N (λ),

where N (x) and N (λ) are the L-neighborhood filters of the space (X, τU) at x and
λ, respectively.

Let U be an L-uniform structure on a set X. Then u ∈ LX×X is called a
surrounding provided U(u) ≥ α for some α ∈ L0 and u = u−1. A surrounding
u ∈ LX×X is called left (right) invariant provided

u(ax, ay) = u(x, y) (u(xa, ya) = u(x, y)) for all a, x, y ∈ X.

U is called a left (right) invariant L-uniform structure if U has a valued L-filter
base consists of left (right) invariant surroundings [9].

L-topological groups. In the following we focus our study on a multiplicative
group G. We denote, as usual, the identity element of G by e and the inverse of an
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element a of G by a−1. Let G be a group and τ an L-topology on G. Then (G, τ)
will be called an L-topological group [1, 5] if the mappings

π : (G×G, τ × τ) → (G, τ) defined by π(a, b) = ab for all a, b ∈ G

and
i : (G, τ) → (G, τ) defined by i(a) = a−1 for all a ∈ G

are L-continuous. π and i are the binary operation and the unary operation of the
inverse on G, respectively.

For all λ ∈ LG, the inverse λi of λ with respect to the unary operation i on G is
the L-set λ ◦ i in G defined by [9]

λi(x) = λ(x−1) for all x ∈ G.

Below, we give some examples of L-topological groups as in [5].

Example 4.1 For a group G, the induced L-topological space (G,ωL(T )) of the
usual topological group (G, T ) is an L-topological group.

Example 4.2 The L-real line RL with L = {0, 1} equipped with the L- addition,
defined in [20], and the L-topology on RL is an L-topological group.

Proposition 4.1 [9] Let (G, τ) be an L-topological group. Then there exist on G a
unique left invariant L-uniform structure U l and a unique right invariant L-uniform
structure U r compatible with τ , constructed using the family (α-prN (e))α∈L0 of all
filters α-prN (e), where N (e) is the L-neighborhood filter at the identity element e
of (G, τ), as follows:

U l(u) =
∨

v∈U l
α, v≤u

α and U r(u) =
∨

v∈Ur
α, v≤u

α, (4.1)

where
U l

α = α-prU l and U r
α = α-prU r (4.2)

are defined by

U l
α = {u ∈ LG×G | u(x, y) = (λ ∧ λi)(x−1y) for some λ ∈ α-prN (e)} (4.3)

and

U r
α = {u ∈ LG×G | u(x, y) = (λ ∧ λi)(xy−1) for some λ ∈ α-prN (e)} (4.4)

We should notice that we shall fix the notations U l, U r, U l
α and U r

α along the
paper to be these defined above.
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Remark 4.1 (cf. [9]) For the L-topological group (G, τ), the elements u of U l
α (U r

α)
are left (right) invariant surroundings. Moreover, (U l

α)α∈L0 ((U r
α)α∈L0) is a valued

L-filter base for the left (right) invariant L-uniform structure U l (U r) defined by
(4.1) - (4.4), respectively.

L-topogenous orders. A binary relation¿ on LX is said to be an L-topogenous
order on X [17] if the following conditions are fulfilled:

(1) 0 ¿ 0 and 1 ¿ 1;

(2) λ ¿ µ implies λ ≤ µ;

(3) λ1 ≤ λ ¿ µ ≤ µ1 implies λ1 ¿ µ1;

(4) From λ1 ¿ µ1 and λ2 ¿ µ2 it follows λ1∨λ2 ¿ µ1∨µ2 and λ1∧λ2 ¿ µ1∧µ2.

An L-topogenous order ¿ is said to be regular or is said to be an L-topogenous
structure if for all λ, µ ∈ LX with λ ¿ µ there is a ν ∈ LX such that λ ¿ ν and
ν ¿ µ hold, and¿ is called complementarily symmetric if λ ¿ µ implies µ′ ¿ λ′ for
all λ, µ ∈ LX and moreover ¿ is called perfect if for each family (λi)i∈I of L-subsets
of X with λi ¿ µ for all i ∈ I it follows

∨
i∈I

λi ¿ µ.

Let (¿n) be a sequence of L-topogenous structures on X and (≺n) a sequence
of L-topogenous structures on IL. Then an L-real function f : X → IL is said to be
associated with the sequence (¿n) if for all λ, µ ∈ LIL , λ ≺n µ implies (λ ◦ f) ¿n+1

(µ ◦ f) for every positive integer n [6].

Now, suppose that (G, τ) has a countable L-neighborhood filter N (e) at the
identity e. Since any L-topological group, from Proposition 4.1, is uniformizable,
then the left and the right invariant L-uniform structures U l and U r, constructed
also in Proposition 4.1, has, from Remark 4.1, a countable L-filter base U l

1
n

and U r
1
n

,

respectively, n ∈ N.

Lemma 4.1 [4] For all λ, µ ∈ LX , we have

λ ≤ µ if and only if λ̇ ≤ µ̇.

Here, we prove this interesting result.

Lemma 4.2 Let U be an L-uniform structure on a set X, and define a binary
relation on LX as follows:

λ ¿U µ ⇐⇒ U [λ̇] ≤ µ̇

for all λ, µ ∈ LX . Then ¿U is a complementarily symmetric perfect L-topogenous
order on X.
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Proof. From the properties of U as an L-filter, (2.1) and Lemma 4.1 we get easily
that ¿U fulfills all the required conditions. 2

Proposition 4.2 [17] There is a one - to - one correspondence between the perfect
L-topogenous structures ¿ on a set X and the L-topologies τ on X. This corre-
spondence is given by

λ ¿ µ ⇔ λ ≤ ν ≤ µ for some ν ∈ τ

for all λ, µ ∈ LX and
τ = {λ ∈ LX | λ ¿ λ }.

Now we have the following result.

Proposition 4.3 Suppose that U and (U 1
n
)n∈N are an L-uniform structure on X

and its countable L-filter base, respectively, and also consider V an L-uniform struc-
ture on IL. Let (¿n)

n∈N denote a sequence of complementarily symmetric perfect

L-topogenous structures on X for which λ ¿n µ ⇐⇒ U [λ̇] ≤ µ̇ for all λ, µ ∈ LX ,
and let Φ be the family of all L-uniformly continuous functions h : (X,U) → (IL,V)
associated with (¿n)

n∈N. Then the mapping σU : X ×X → IL defined by

σU(x, y) = sup{σf (x, y) | f ∈ Φ},
where σf (x, y) = (f(x) − f(y))+ for all x, y ∈ X, is an L-pseudo-metric on X and
τU = τσU .

Proof. The proof of that σU is an L-pseudo-metric on X comes from Lemma 3.1,
Lemma 3.2, and Lemma 4.2.

Since for any λ ∈ LX , and from Proposition 4.2

λ ¿n λ ⇐⇒ U [λ̇] ≤ λ̇

means that λ ∈ τU if and only if λ ∈ τσU , where σU is generated by all the L-pseudo-
metrics σh for every h associated with ¿n. Hence, τU = τσU . 2

5. The metrizability of L-topological groups

This section is devoted to show that any (separated) L-topological group is
pseudo-metrizable (metrizable).

An L-topological group (G, τ) is called separated if for the identity element e,
we have

∧
λ∈α-prN (e)

λ(e) ≥ α, and
∧

λ∈α-prN (e)
λ(x) < α for all x ∈ G with x 6= e and

for all α ∈ L0 [9].
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Proposition 5.1 [9] Any (separated) L-topological group is a (GT3 1
2
-space) com-

pletely regular space.

Now, we are going to show the main result in this paper.

Proposition 5.2 Any (separated) L-topological group (G, τ) is pseudo-metrizable
(metrizable).

Proof. From Proposition 4.1, we have unique left and unique right L-uniform
structures U l and U r on G defined by (4.1) such that τ = τU l = τUr . Proposition 4.3
implies that τ = τU l = τσUl

and τ = τUr = τσUr , and therefore (G, τ) is pseudo-
metrizable.

Also, if (G, τ) is separated, then from Proposition 5.1, we get that (G, τ) is a
GT0-space, and hence, from Lemma 3.3, we have that (G, τ) is metrizable. 2

We also have the following important result.

Proposition 5.3 Let (G, τ) be a ( separated ) L-topological group. Then the fol-
lowing statements are equivalent.

(1) τ is pseudo-metrizable (metrizable);

(2) e has a countable L-neighborhood filter N (e);

(3) τ can be induced by a left invariant L-pseudo-metric (L-metric);

(4) τ can be induced by a right invariant L-pseudo-metric (L-metric).

Proof.

(1) ⇒ (2): Follows from Proposition 3.1

(2) ⇒ (3): Let e has a countable L-neighborhood filter N (e), and let U l
1
n

be a

countable L-filter base of the left invariant L-uniform structure U l, defined by (4.1),
which is compatible with τ . Then, from Lemma 4.2, λ ¿U l µ ⇔ U l[λ̇] ≤ µ̇ for all
λ, µ ∈ LG defines a sequence of complementarily symmetric perfect L-topogenous
structures on G. Taking V as an L-uniform structure on IL and Φ as the family of
all L-uniformly continuous functions h : (G,U l) → (IL,V) associated with ¿U l , we
get, from Proposition 4.3, that the L-mapping σ : G×G → IL defined by σ(x, y) =
sup{(f(x)− f(y))+ | f ∈ Φ} is an L-pseudo-metric on G and τ = τU l = τσUl

.

Now, we define ha : G → IL by ha(x) = h(ax) for all a, x ∈ G. From h ∈ Φ is
L-uniformly continuous, that is, FL(h×h)(U l) ≤ V and that the elements of U l

1
n

are
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left invariant from Remark 4.1, and from (4.1), we have

FL(ha × ha)U l(v) = U l(v ◦ (ha × ha))

=
∨

u∈U l
1
n

, u≤v◦(ha×ha)

α

=
∨

u∈U l
1
n

, u≤v◦(h×h)

α

= FL(h× h)U l(v)

≥ V(v).

Hence, ha is L-uniformly continuous associated with ¿U l , that is, ha ∈ Φ. Thus

σ(ax, ay) = sup{(h(ax)− h(ay))+ | h ∈ Φ}
= sup{(ha(x)− ha(y))+ | h ∈ Φ}
≤ sup{(k(x)− k(y))+ | k ∈ Φ}
= σ(x, y).

Applying the same for a−1 instead of a, we get that

σ(x, y) = σ(a−1ax, a−1ay) ≤ σ(ax, ay).

That is, σ(ax, ay) = σ(x, y) for all a, x, y ∈ G and then σ is a left invariant L-
pseudo-metric on G inducing τ .

(2) ⇒ (4): By a similar proof as in the case (2) ⇒ (3).

(3) ⇒ (1) and (4) ⇒ (1): Obvious.

The proposition is still true if we consider the parentheses. 2

Example 5.1 From Proposition 5.2, we can deduce that any L-topological group
(G, τ) on which there can be constructed an L-uniform structure U compatible with
τ is pseudo-metrizable in general and is metrizable whenever (G, τ) is separated.
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S. E. Rodabaugh, E. P. Klement, U.Höhle; Applications of Category Theory to
Fuzzy Subsets, Kluwer Academic Publishers, (1992) 109 - 136.

[12] S. Gähler, W. Gähler; Fuzzy real numbers, Fuzzy Sets and Systems 66 (1994) 137 -
158.

[13] W. Gähler; The general fuzzy filter approach to fuzzy topology, I, Fuzzy Sets and
Systems 76 (1995) 205 - 224.

[14] W. Gähler; The general fuzzy filter approach to fuzzy topology, II, Fuzzy Sets and
Systems 76 (1995) 225-246.

[15] W. Gähler, F. Bayoumi, A. Kandil, A. Nouh; The theory of global fuzzy neighborhood
structures, III, Fuzzy uniform structures, Fuzzy Sets and Systems 98 (1998) 175 -
199.

[16] J. A. Goguen; L-fuzzy sets, J. Math. Anal. Appl. 18 (1967) 145 - 174.

[17] A. K. Katsaras, C. G. Petalas; On fuzzy syntopogenous structures, J. Math. Anal.
Appl. 99 (1984) 219 - 236.

[18] R. Lowen; Convergence in fuzzy topological spaces, General Topol. Appl. 10 (1979)
147 - 160.
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