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Abstract

This paper studies the metrizability of the notion of L-topological groups defined by Ahsanul-
lah. We show that for any (separated) L-topological group there is an L-pseudo-metric (L-metric),
in sense of Géhler which is defined using his notion of L-real numbers, compatible with the L-
topology of this (separated) L-topological group. That is, any (separated) L-topological group is
pseudo-metrizable (metrizable).
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1. Introduction

The notion of L-real numbers is defined and studied by S. Gahler and W. Géahler
in [12]. Ry, denotes the set of all L-real numbers. The subset R} of Ry, of all positive
L-real numbers is used to define the L-pseudo-metric (L-metric) on a set X, by the
same authors in [12], as a mapping of the cartesian product X x X to R} which
satisfies similar conditions to the conditions of the usual metric. In this paper, we
study the metrizability, using the L-pseudo-metric (L-metric) in sense of [12], of a
notion of L-topological group which is introduced in [1] and studied in [5]. This
L-topological group is defined as a group equipped with an L-topology such that
both the binary operation and the unary operation of the inverse are L-continuous
with respect to this L-topology.

In this paper, using the uniformizability of L-topological groups introduced by
the authors in [9], we show that any (separated) L-topological group is pseudo-
metrizable (metrizable). In [9] is used the L-uniform structures which are defined
in [15] on a set X, in a similar way to the usual case, as L-filters on X x X.

In Section 2 of this paper we recall some results on L-filters, L-real numbers
defined by Géhler in [11, 12, 13, 14}, and some separation axioms defined by the
authors in [2, 3, 6, 7, 8].

Sections 3 and 4 introduce and show some results on L-metric and L-uniform
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spaces, respectively, which are needed to show the metrizability of L-topological
groups.

In Section 5 we show that the L-pseudo-metric (L-metric), in sense of [12], in-
duces the L-topology of a (separated) L-topological group, that is, any (separated)
L-topological group is pseudo-metrizable (metrizable).

2. On L-filters

Here we recall some ideas concerning L-filters needed in this paper. Denote
by LX the set of all L-subsets of a non-empty set X, where L is a complete chain
with different least and greatest elements 0 and 1, respectively [20]. For each L-set
A € L¥ ) let X denote the complement of A, defined by X(x) = \(z)’ for all x € X.
For all + € X and o € Ly, the L-subset x, of X whose value is a at = and 0
otherwise is called an L-point in X and the constant L-subset of X with value «
will be denoted by a.

L-filters. By an L-filter on a non-empty set X we mean [13] a mapping M :
LX — L such that M(@) < a for all @ € L and M(1) = 1, and also M(A A p) =
M) A M(p) for all A\, € LX. M is called homogeneous [11] if M(a) = «a for
all « € L. If M and N are L-filters on X, M is called finer than N, denoted by
M < N, provided M()\) > N(A) holds for all A € L*.

Let Fp X denote the set of all L-filters on X, f : X — Y a mapping and M,

N are L-filters on X, Y, respectively. Then the image of M and the preimage of

N with respect to f are the L-filters 1 f(M) on Y and F f(N) on X defined by

FrfM)(p) = M(uo f) for all p € LY and F; f(N)(\) = >/<A./\/'(,u) for all
pof<

A\ € LY, respectively. For each mapping f : X — Y and each L-filter A" on Y, for
which the preimage F; f(N) exists, we have Frf(F; f(N)) < N. Moreover, for
each L-filter M on X, the inequality M < F; f(Frf(M)) holds [13].
For any set A of L-filters on X, the infimum A M, with respect to the finer
MeA

relation on L-filters, does not exist in general. The infimum A M of A exists if
MeA

and only if for each non-empty finite subset { My, ..., M, } of A we have M;(\) A
e AM () <sup(M A AN, forall Ay, ..o N, € LY [11]. If the infimum of A
exists, then for each A € L* and n as a positive integer we have

(A MK =V (M)A AM(A)).

MeA A A AAR <A,
My, ,Mp €A

By a filter on X we mean a non-empty subset F of LX which does not contain
0 and closed under finite infima and super sets [18]. For each L-filter M on X, the
subset a-pr M of LX defined by: a-prM = {\ € LX | M()\) > «} is a filter on
X.



A family (By)acr, of non-empty subsets of LX is called valued L-filter base on
X [13] if the following conditions are fulfilled:

(V1) X € B, implies o < supA.

(V2) For all o, 5 € Ly and all L-sets A € B, and u € Bg, if even a A > 0 holds,
then there are a v > a A 8 and an L-set v < A A p such that v € B,.

Each valued L-filter base (B,)acr, on a set X defines an L-filter M on X by:
M) = V aforall A € L*. On the other hand, each L-filter M can be gener-

H’GBDH /'LS)‘
ated by many valued L-filter bases, and among them the greatest one (a-pr M),er, -

L-neighborhood filters. In the following, in sense of [10, 16], the topology
will be used and will be called L-topology. int, and cl, denote the interior and
the closure operators with respect to the L-topology 7, respectively. For each L-
topological space (X, 7) and each z € X the mapping N(z) : LX — L defined by:
N(z)(\) = int, \(z) for all A € L¥ is an L-filter on X, called the L-neighborhood
filter of the space (X, 7) at z, and the mapping i : LX — L defined by #(\) = A\(x)
for all A € L¥ is a homogeneous L-filter on X. Let (X,7) and (Y,0) be two L-
topological spaces. Then the mapping f : (X, 7) — (Y, 0) is called L-continuous (or
(7, 0)-continuous) provided int,u o f <int,(po f) for all p € LY [14].

The L-neighborhood filter N'(F) at an ordinary subset F' of X is the L-filter on
X defined, by the authors in [3], by means of N'(z), x € F as: N(F) = V N(x).
el

The L-filter F' is defined by: ' = V\ i. F' < N(F) holds for all subsets F of X.
zeF

Recall also here the L-filter A and the L-neighborhood filter A'(\) at an L-subset A
of X which are defined by

A=\ @ and NN =\ N(2), (2.1)

0<A(z) 0<A(z)
respectively. A < A(\) holds for all A € LX [4].

L-real numbers. By an L-real number is meant [12] a convex, normal, com-
pactly supported and upper semi-continuous L-subset of the set of all real numbers
R.. The set of all L-real numbers is denoted by R. R is canonically embedded into
R, identifying each real number a with the crisp L-number ™ defined by a™(§) = 1
if ¢ = a and 0 otherwise. The set of all positive L-real numbers is defined and de-
noted by: R} ={x € Ry | z(0)=1and 0~ <z} andlet I, ={z € R} |z < 1%},
where I = [0,1] is the real unit interval. Notice that, with < we mean that the
binary operation on R defined by

<Y 2o < Yo, ad Ty, < Yo,

for all z,y € Ry where z,, = inf{z € R | z(2) > a} and z,, = sup{z € R |
x(z) > a} for all x € Ry and for all @ € Ly. It is shown in [13] that the class
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{Rsl, | 6€I} U {R|, | 6 €I} U {07} is a base for an L-topology
S on Iy, where R? and Rg are the L-subsets of Ry, defined by Rs(x) = V z(«)
a>6

and R(z) = (V z(a)) for all z € R and 6 € R and note that Rs|;,, R°|;, are
a>d

the restrictions of Rs, R® on Iy, respectively. Recall also that z 4+ y are L-real

numbers defined by (z £+ y)(&§) = V (x(n) ANy(C)) for all £ € R. (Ry,+)
n,¢eR., ni¢=¢
is a commutative semi group with identity element 0~. The positive part " of an

L-real number z is defined as ™ = 0™ V x, where
r—x=07 (z+y)" < " +y" (2.2)
GT;-spaces. An L-topological space (X, 7) is called [2, 6]:
(1) GTy if for all 2,y € X with x # y we have & € N (y) or § £ N (x).

(2) GTy if for all z,y € X with z # y we have & £ N(y) and y £ N (x).

(3) completely regular if for all x ¢ F and F' = cl. F', there exists an L-continuous
mapping [ : (X,7) — (I, ) such that f(x) =1 and f(y) =0 for all y € F.

(4) GT3:1 (or L-Tychonoff ) if it is GT1 and completely regular.

Proposition 2.1 |2, 3,6, 7, 8] Every GT;-space is GT;_1-space for alli = 1,2,3,4,5,6.
Moreover, the implications between GT5-spaces, GTg1-spaces, GT3-spaces, G191 -

2 2
spaces and GTy-spaces goes as expected.

3. Some results on L-metric spaces

A mapping ¢ : X x X — R is called an L-metric [12] on X if the following
conditions are fulfilled:

(1) o(x,y) =0~ if and only if x =y
(2) oz, y) = oly,x)
(3) o(z.y) < oz, 2) + o(2,y).

If o : X xX — R] satisfies the conditions (2) and (3) and the following
condition:

(1) o(z,y) =0~ifx =y



then it is called an L-pseudo-metric on X.

A set X equipped with an L-pseudo-metric (L-metric) ¢ on X is called an L-
pseudo-metric (L-metric) space.

To each L-pseudo-metric (L-metric) o on a set X is generated canonically a
stratified L-topology 7, on X which has {eop, | ¢ € £, x € X} as a base, where
0. : X — Rj is the mapping defined by ¢,(y) = o(z,y) and

£ = {anRlg. | 6>0, aeL}u{a | acL},

here @ has R} as domain.

An L-topological space (X, 7) is called pseudo-metrizable (metrizable) if there is
an L-pseudo-metric (L-metric) p on X inducing 7, that is, 7 = 7,.

An L-pseudo-metric g is called left (right) invariant if

o(x,y) = o(ax, ay) (o(x,y) = o(wa,ya)) forall a,z,y € X.

An L-set A\ € L is called countable (finite) if its support is countable (finite),
where the support of A is the set {x € X | 0 < A(z)}.

Let us call an L-filter M on a set X countable if the sets a-prM are countable
for all a € L.

Definition 3.1 An L-topological space (X, 7) is called first countable if every point
x € X has a countable L-neighborhood filter N ().

Proposition 3.1 For any L-pseudo-metric o on a set X, if 7, is the L-topology
associated with o, then (X, 1,) is a first countable space.

Proof. Since {co0p, | € € &, © € X} is a base for 7,, then for all n € N, the set
B, ={eno0: | en €&, xe€ X}, where ¢, = %/\ R6|R27 is the +-pr M (z), which
implies that there exists a countable L-neighborhood filter NV (x) at every point
x € X. Hence, (X, 7,) is a first countable space. O

By an L-function family ® on a set X, we mean the set of all L-real functions
f: X —=1I.

We also have the following results.

Lemma 3.1 Let ® be an L-function family on X and oy : X x X — I, is a mapping
defined by

or(z,y) = (f(z) = fW)", fe

Then oy is an L-pseudo-metric on X.



Proof. Clearly, o¢(z,y) = os(y,z). From (2.2), we get that o;(z,z) = (f(x) —
f(x))" =0~ for all z € X, and moreover

op(zy) = (f2) = fW)" < (f2) = f(2)T + (f(2) = f )" = 04(x,2) + 04(2,p).

Hence, oy is an L-pseudo-metric on X. O

Lemma 3.2 Leto;: X x X — I, i € I be an arbitrary set of L-pseudo-metrics on
the set X. Then

o(z,y) = sup{o;(z,y) |1 € I}

defines an L-pseudo-metric on X as well.

Proof. Only the triangle inequality has to be shown. For all x,y,z € X and all
1 € I, we have

Ui('ru y) < O-i(x7 Z) + Ui(za y) < O'(QZ, ’Z) + U(Za y)7
and then o(z,y) < o(z,2) + o(z,y). Hence, o is an L-pseudo-metric on X. O

Here, we have shown this fact.

Lemma 3.3 Any L-pseudo-metric o on a set X is an L-metric on X if and only if
(X, 7,) is a GTy-space.

Proof. Let z,y € X and y # x. Since (X, 7,) is a GTy-space, then there exists
p € LY such that p(z) < 8 < int, p(y) for some 3 € Ly. From the definition of
the base of 7,, since

intr,u(2) = A A R|R: (o, 2)) = a A (\ o(w,2)(n))

n>6

for all z € X and for some o € L, then o(x,y) = 0~ implies that int,, u(y) = aAl =
for all y € X and all u € LX. Hence,

a = int, pu(z) < p(r) < B < int,puy) = a,

that is, @ < # < a which is a contradiction, and thus x = y and p is an L-metric.

Now, let x # y and so o(z, y) # 07, then there exists a > 0 such that o(z,y)(a) >
0 and hence taking v =1 A R‘S\Rz 00, € LX, we get that

v(y) = 1A R(ola,y)) = 1A (\ oz, 2)(n)) <1

n>0

whenever ¢ is chosen to be a very small number tends to zero. But int, v(z) =
LA(V o(xz,x)(n)) = 1. Hence, (X,7,) is a GTy-space. O
n=0
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4. On L-uniform spaces

An L-filter U on X x X is called L-uniform structure on X [15] if the following
conditions are fulfilled:

(Ul) (z,z)" <U for all z € X
(U2) U =U",
(U3) UolU <U.

Where (z,2)" (u) = u(z,z), U (u) =U(u™) and Uold)(u) = V Uw)AV(v))

vow<u

for all w € LX*X and u=(z,y) = u(y, z) and (vow)(z,y) = V (w(x,2) Av(z,y))
ze€X
for all z,y € X.

A set X equipped with an L-uniform structure U is called an L-uniform space.
A mapping f: (X,U) — (Y, V) between L-uniform spaces (X,U) and (Y, V) is said
to be L-uniformly continuous (or (U, V)-continuous) provided

Fr(f x i) <V

holds. For each L-uniform structure & on X is associated a stratified L-topology
Tu- The related interior operator inty, is given by:

(it A)(2) = U[z](N)

for all x € X and all A € L¥, where U[z](\) = V (U(u) A p(x)) and ulp](z) =

ul[p]<A

V (u(y) Au(y,z)). For all z € X and all A € L* we have
yeX

Ulz] = N(z) and U\ =N(N),

where N (z) and N(\) are the L-neighborhood filters of the space (X, 1) at x and
A, respectively.

Let U be an L-uniform structure on a set X. Then u € LX*¥X is called a

surrounding provided U(u) > « for some a € Ly and u = u~!. A surrounding

u € LX*X is called left (right) invariant provided
w(ax,ay) =u(z,y)  (u(za,ya) = u(x,y)) for all a,z,y € X.

U is called a left (right) invariant L-uniform structure if & has a valued L-filter
base consists of left (right) invariant surroundings [9].

L-topological groups. In the following we focus our study on a multiplicative
group G. We denote, as usual, the identity element of G by e and the inverse of an
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element a of G by a™!. Let G be a group and 7 an L-topology on G. Then (G, 7)
will be called an L-topological group [1, 5] if the mappings

m:(GxXG,7x71)— (G,7) defined by 7(a,b) =ab forall a,be G

and
i:(G,7) — (G,7) defined by i(a) =a"' foral a€G

are L-continuous. 7 and ¢ are the binary operation and the unary operation of the
inverse on (G, respectively.

For all A € LY, the inverse A\ of A with respect to the unary operation ¢ on G is
the L-set Ao in G defined by [9]

N(z) = AMa™t) forall z € G.
Below, we give some examples of L-topological groups as in [5].

Example 4.1 For a group G, the induced L-topological space (G,w(T)) of the
usual topological group (G, T) is an L-topological group.

Example 4.2 The L-real line R, with L = {0, 1} equipped with the L- addition,
defined in [20], and the L-topology on Ry, is an L-topological group.

Proposition 4.1 [9] Let (G, 7) be an L-topological group. Then there exist on G a
unique left invariant L-uniform structure U and a unique right invariant L-uniform
structure U™ compatible with T, constructed using the family (a-pr N'(€))aer, of all
filters a-pr N (e), where N (e) is the L-neighborhood filter at the identity element e
of (G, ), as follows:

Uw)= \/ « and Uw= V\V a (4.1)
vell,, v<u velr, v<u
where
U = a-prit and U = a-prid” (4.2)

are defined by
UL ={u e L9C | u(z,y) = AAX)(@7y) for some A € a-prN(e)} (4.3)
and

U ={u e L9C | u(z,y) = AAX)(@y™h) for some A € a-prN(e)} (4.4)

We should notice that we shall fix the notations U', U", U and U’, along the
paper to be these defined above.



Remark 4.1 (cf. [9]) For the L-topological group (G, 7), the elements u of U, (U")
are left (right) invariant surroundings. Moreover, (U)acr, ((US)acr,) is a valued
L-filter base for the left (right) invariant L-uniform structure U' (U") defined by
(4.1) - (4.4), respectively.

L-topogenous orders. A binary relation < on L¥ is said to be an L-topogenous
order on X [17] if the following conditions are fulfilled:

1) 0« 0and 1 < 1;

3) A <AL p <y implies A\ < puq;

(1)
(2) A < p implies A < 5
(3)
(4)

From A\ < pq and Ay < ps it follows Ay V Ay < g V o and Ay A dg << g A pia.

An L-topogenous order < is said to be regular or is said to be an L-topogenous
structure if for all A\, € LX with A\ < p there is a v € LX such that A < v and
v < i hold, and < is called complementarily symmetric if A < p implies p/ << X for
all A\, u € L* and moreover < is called perfect if for each family (););e; of L-subsets
of X with \; < u for all ¢+ € I it follows ‘\/I A K .
1€

Let (<) be a sequence of L-topogenous structures on X and (<,,) a sequence
of L-topogenous structures on I,. Then an L-real function f : X — [ is said to be
associated with the sequence (<, if for all A\, u € L2, X\ <, p implies (Ao f) <,i1
(uo f) for every positive integer n [6].

Now, suppose that (G,7) has a countable L-neighborhood filter N(e) at the
identity e. Since any L-topological group, from Proposition 4.1, is uniformizable,
then the left and the right invariant L-uniform structures ¢! and U", constructed
also in Proposition 4.1, has, from Remark 4.1, a countable L-filter base U} and U",

respectively, n € N.

Lemma 4.1 [4] For all \,u € L, we have

A < if and only if A < .

Here, we prove this interesting result.

Lemma 4.2 Let U be an L-uniform structure on a set X, and define a binary
relation on LX as follows:

ALy p <= UN<pn

for all \,;n € LX. Then <y is a complementarily symmetric perfect L-topogenous
order on X.



Proof. From the properties of U as an L-filter, (2.1) and Lemma 4.1 we get easily
that <, fulfills all the required conditions. O

Proposition 4.2 [17] There is a one - to - one correspondence between the perfect
L-topogenous structures < on a set X and the L-topologies T on X. This corre-
spondence s given by

AL & A<v<puforsomev eT

for all \,u € L* and
T ={Ae X | A<}

Now we have the following result.

Proposition 4.3 Suppose that U and (Ur),en are an L-uniform structure on X
and its countable L-filter base, respectively, and also consider V an L-uniform struc-
ture on I. Let (<<n)n€N denote a sequence of complementarily symmetric perfect

L-topogenous structures on X for which X <, u <= U[N < i for all \,u € L,
and let @ be the family of all L-uniformly continuous functions h : (X,U) — (I, V)
associated with (<), . N- Then the mapping oy = X x X — Iy, defined by

ou(x,y) = supfop(z,y) | f € P},
where o(x,y) = (f(x) — f(y))T for all z,y € X, is an L-pseudo-metric on X and

Tu = Tgu.

Proof. The proof of that oy, is an L-pseudo-metric on X comes from Lemma 3.1,
Lemma 3.2, and Lemma 4.2.

Since for any A € L, and from Proposition 4.2
A<n A = U <A

means that A € 7, if and only if A € 7,,,, where 0y, is generated by all the L-pseudo-
metrics oy, for every h associated with <,,. Hence, 7y = 7,,,. O

5. The metrizability of L-topological groups

This section is devoted to show that any (separated) L-topological group is
pseudo-metrizable (metrizable).

An L-topological group (G, ) is called separated if for the identity element e,

we have A Ae) > a, and A AMz) < a for all x € G with z # e and
A€a-prN (e) A€a-prN (e)
for all a € Lg [9].
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Proposition 5.1 [9] Any (separated) L-topological group is a (GT3.-space) com-
2
pletely regular space.

Now, we are going to show the main result in this paper.

Proposition 5.2 Any (separated) L-topological group (G, 1) is pseudo-metrizable
(metrizable).

Proof. From Proposition 4.1, we have unique left and unique right L-uniform
structures U’ and U" on G defined by (4.1) such that 7 = 74 = 74+. Proposition 4.3
implies that 7 = ¢ = 7, , and 7 = 7 = 75,,, and therefore (G, 1) is pseudo-
metrizable.

Also, if (G, T) is separated, then from Proposition 5.1, we get that (G,7) is a
GTy-space, and hence, from Lemma 3.3, we have that (G, 7) is metrizable. O

We also have the following important result.

Proposition 5.3 Let (G,7) be a ( separated ) L-topological group. Then the fol-
lowing statements are equivalent.

1) 7 is pseudo-metrizable (metrizable);

(1)

(2) e has a countable L-neighborhood filter N (e);

(3) T can be induced by a left invariant L-pseudo-metric (L-metric);
(4)

4) 7 can be induced by a right invariant L-pseudo-metric (L-metric).

(1) = (2): Follows from Proposition 3.1

= : Let e has a countable L-nel orhoo ter e), and let U7 be a
(2) (3): L h ble L-neighborhood filter N (e) dl uﬁb

countable L-filter base of the left invariant L-uniform structure U, defined by (4.1),
which is compatible with 7. Then, from Lemma 4.2, A < p1 < U'[A] < fu for all
A, it € LY defines a sequence of complementarily symmetric perfect L-topogenous
structures on GG. Taking )V as an L-uniform structure on I and ¢ as the family of
all L-uniformly continuous functions h : (G,U') — (I1,, V) associated with <., we
get, from Proposition 4.3, that the L-mapping 0 : G x G — I, defined by o(z,y) =
sup{(f(x) — f(y))* | f € ®} is an L-pseudo-metric on G and 7 =7y = 7, ,.

Now, we define h, : G — I, by h,(x) = h(az) for all a,z € G. From h € ® is
L-uniformly continuous, that is, 7 (h x h)(U') <V and that the elements of % are

n
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left invariant from Remark 4.1, and from (4.1), we have

Fir(hg x h)U' (v) U (v o (he X hy))

= \V a

uGMll ,u<vo(hg Xha)

V

uell ,u<vo(hxh)
n

= Fr(h x h)U'(v)
> V(v).

Hence, h, is L-uniformly continuous associated with <., that is, h, € ®. Thus

o(ax,ay) = sup{(h(ax) — h(ay))" | h € B}
= sup{(ha(x) = ha(y))" | h € }
< sup{(k(z) — k(y))" | k € ©}

= o(z,y).

Applying the same for a~! instead of a, we get that
o(2,9) = o(a™ az, a ay) < olaz, ay).

That is, o(ax,ay) = o(x,y) for all a,z,y € G and then o is a left invariant L-
pseudo-metric on G inducing 7.

(2) = (4): By a similar proof as in the case (2) = (3).

(3) = (1) and (4) = (1): Obvious.

The proposition is still true if we consider the parentheses. O

Example 5.1 From Proposition 5.2, we can deduce that any L-topological group
(G, 7) on which there can be constructed an L-uniform structure & compatible with
T is pseudo-metrizable in general and is metrizable whenever (G, 7) is separated.
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